1	Q.	NUG	cost benefits for ratepayers:
2			
3		(1)	Indicate the overall cost benefits to ratepayers (through reduced
4			revenue requirements in 2002 and subsequent years) provided by
5			each of the NUGs implemented since 1992.
6		(2)	Indicate the forecast kWh for 2002, and actual numbers for each year
7			to date of operation, of the generation for each NUG during the winter
8			months (January to March and November and December) and the
9			other months (April to October).
10		(3)	Compare mill/kWh costs for each NUG (as set out in Schedule IX to
11			R. J. Henderson's evidence) to costs forecast for existing thermal
12			facilities and for other new generation options available to Hydro.
13		(4)	Explain the basis for setting NUG charges higher in 5 winter months
14			relative to the other months, and indicate the extent to which these
15			differences reflect Hydro's variability in seasonal time-of-use costs.
16			
17	Α.	(1)	On a go-forward basis, the overall forecast cost benefit to ratepayers
18			provided by Algonquin Power and the Star Lake Partnership for the
19			period from 2002 to 2006 is shown below. The expansion plan
20			beyond 2006 has not been finalized. The total forecast benefit is
21			comprised of an energy component and a capacity component. The
22			energy component is based on avoided thermal energy production
23			including fuel and variable O&M, as produced by Hydro's generation
24			planning model. The capacity component is based on the capital cost
25			of a similar amount of simple cycle gas turbine capacity which is
26			Hydro's least costly capacity alternative. In addition to these direct
27			benefits, other benefits such as reduced emissions from Hydro's
28			thermal plants are also derived from the NUGS contracts.
28			thermal plants are also derived from the NUGS contracts.

IC 208 Revised 2001 General Rate Application

Page 2 of 4

	(mills/kWh)				
		Algonquin Power		Star Lake Hydro	
	Avoided	Project		Project	
Year	Costs	Costs	Variance	Costs	Variance
2002	73.5	70.6	2.9	67.9	5.5
2003	64.6	71.2	-6.5	68.5	-3.8
2004	59.0	71.9	-12.9	69.1	-10.1
2005	59.9	72.7	-12.8	69.9	-10.0
2006	63.0	73.5	-10.5	70.6	-7.6

(2) Please refer to table below:

Newfoundland & Labrador Hydro NUGS Power Purchases

Star Lake Hydro Partnership

	January to	April to	November to
	March	October	December
Actual	(kWh)	(kWh)	(kWh)
1998	0	3,036,448	23,590,499
1999	35,357,979	79,806,714	23,623,995
2000	36,942,083	81,419,129	24,689,199
Forecast			
2001	29,181,000	76,691,000	22,129,000
2002	29,181,000	76,691,000	22,129,000

Algonquin Power (Rattle Brook) Partnership

	January to	April to	November to
	March	October	December
Actual	(kWh)	(kWh)	(kWh)
1998	0	112,056	2,502,760
1999	3,796,698	10,449,273	3,130,405
2000	2,997,733	11,431,296	3,397,398
Forecast			
2001	1,650,000	12,980,000	3,270,000
2002	1,650,000	12,980,000	3,270,000

IC 208 Revised 2001 General Rate Application Page 3 of 4

1	(3)	The comparison of m	ill/kWh costs fo	r each NUG t	o forecast costs for
2		existing thermal facilit	ties and Granite	e Canal is sho	wn below. For
3		reasons of commercia	al confidentiality	/, Hydro cann	ot provide similar
4		information for other r	new generation	options availa	able to Hydro.
5					
6				Mills/kWh	
7		_	2001	2002	2004
8	Algor	iquin Power	69.8	70.6	
9	Star L	ake Partnership	67.3	67.9	
10	Existi	ng Holyrood ⁽¹⁾	52.9	51.0	
11	Existi	ng Gas Turbine ⁽¹⁾	115.6	112.0	
12	Existi	ng Diesel ⁽¹⁾	103.4	100.3	
13	Grani	te Canal ⁽²⁾			54.2
14					
15	⁽¹⁾ C	osts for existing therma	al plant reflect fu	uel and variab	le O&M costs
16	⁽²⁾ C	ost for Granite Canal re	eflects the leveli	zed capital re	covery and O&M
17	cc	osts for the first full year	r of operation.		
18					
19	(4)	In the 1992 RFP for r	non-utility gener	ration from sn	nall scale hydro
20		projects, Hydro set a	maximum price	schedule for	proposals whereby
21		proponents could elec	ct to submit tho	se prices or a	n alternative lower
22		schedule of prices.			
23					
24		Only the demand con	nponent of the p	pricing structu	re varied between
25		winter and summer. T	The energy port	ion was held	constant for the
26		year. The basis for se	etting the demar	nd componen	t of the price higher
27		for the winter months	was the Septer	mber 1984 stu	udy of Marginal Time
28		of Use (TOU) Costs.	That study indic	ated that the	seasonality of load

	Page 4 of 4
1	affected costs whereby the ratio of winter costs to summer costs was
2	1.5.
3	
4	To factor seasonal TOU into avoided costs, the Loss of Load
5	Expectation (LOLE) index was used to allocate the capacity
6	component of costs throughout the year. This resulted in a distribution
7	of capacity costs of 60% during November to March and 40% for the
8	remaining months.